
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Alternative Solution to International Olympiad in

Informatics 2023 'Overtaking' Problem Using

Dynamic Programming and Binary Search

Kloce Paul William Saragih - 13524040

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: kloce.edu@gmail.com , 13524040@std.stei.itb.ac.id

Abstract—The “Overtaking” problem from the International

Olympiad in Informatics (IOI) 2023 was one of the challenging

task. While the official solution employs a clever and efficient

segment-point decomposition, this paper introduces an alternative

approach that combines dynamic programming and binary

search. While this solution does not surpass the official solution in

time complexity, it offers a more accessible and easier-to-

implement alternative. Experimental analysis and comparisons

with the official solution highlight the strengths and trade-offs of

this alternative approach.

Keywords— International Olympiad in Informatics, Dynamic

programming, Binary search, Memoisation.

I. INTRODUCTION

A. Background Information

The International Olympiad in Informatics (IOI) is one of the
many international science olympiads in the field of computer
science for high school students that is held every year. Each
competitor is required to create a program in order to solve each
presented task efficiently.

One of the problems featured in IOI 2023 was “Overtaking”,
authored by Bernard Teo. The official problem statement spans
five pages and includes detailed explanations, sample cases,
subtasks, and more. The official solution for this problem can
be found in Eljakim Schrijvers’s youtube channel. However, this
paper focuses on presenting an alternative approach to solve the
problem with dynamic programming and binary search.

B. Problem Statment

The official problem statement can be found at the following
link: IOI Overtaking. While it is recommended to read the full
official description, the core idea of the problem can be
summarized as follows:

Given 𝑁 + 1 buses traveling along a one-way road from the
airport to the hotel, N regular buses depart at specified times and
travel at fixed speeds, while one reserve bus's departure time is
to be determined. Buses are not allowed to overtake each other
except at designated sorting stations located at positions
𝑆[0], 𝑆[1], … , 𝑆[𝑀], where 𝑆[0] = 0 (the airport) and 𝑆[𝑀] is
the hotel. At each sorting station, buses may be reordered based

on their expected arrival times. The task is to answer 𝑄 queries:
for each given departure time 𝑌 of the reserve bus, determine the
time it will arrive at the hotel, accounting for delays caused by
slower buses ahead.

C. Overview

Chapter II outlines thereotical basis relevant to the

alternative approach. Chapter III presents an indepth analysis of

the problem, beginning with a series of naïve and inefficient

algorithms and gradually refining them into the final optimized

solution. Chapter IV compares the performance of each solution

presented in chapter III, including the final optimized solution

and the official solution of this problem.

II. THEREOTICAL BASIS

A. Graph

A graph 𝐺 is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where

𝑉 is the set of vertices and 𝐸 is the set of edges, where each

edge connects two vertices. Based on the relation of its vertices,

a graph can be classified as:

a) Undirected graph

An edge that connects A and B can be traversed from A

to B and B to A.

b) Directed graph

An edge that connects A and B can only be traversed

from A to B.

Fig. 1. Undirected graph (left) and directed graph (right)

[https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

mailto:kloce.edu@gmail.com
mailto:13524040@std.stei.itb.ac.id
https://ioinformatics.org/files/ioi2023problem5.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Based on the weight of it’ edges, a graph can also be classified as:

a) Unweighted graph

An unweighted graph consists of edges with uniform

edges. An unweighted graph only considers the relation

of each vertices.

b) Weighted graph

A weighted graph consists of edges with various

weights. Weight of an edge could represent distance or

cost.

Fig. 2. Unweighted graph (left) and weighted graph (right)

[https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

A cycle of a graph is a path that starts and ends at the same vertex with all edges

and vertices (except the starting and ending vertex) being distinct.

Fig. 3. A cycle of an undirected graph (A-B-C-D)

A directed acyclic graph (DAG) is a special form of directed graph. A directed

acyclic graph does not form any cycles.

Fig. 4. Figure (a) forms a DAG, however figure (b) isn’t since it consist of a

cycle (B-C-E-D) [https://osn.toki.id/data/pemrograman-

kompetitif-dasar.pdf]

B. Time Complexity

The time complexity of an algorithm estimates how much

time the algorithm will use for some input. We denote the

amount of time an algorithm takes in relation 𝑁 as 𝑇(𝑁). We

can classify time complexities in three different categories:

a) 𝑇𝑚𝑎𝑥(𝑛) ∶ worst case time complexity

b) 𝑇𝑚𝑖𝑛(𝑛) ∶ best case time complexity

c) 𝑇𝑎𝑣𝑔(𝑛) ∶ average case time complexity

In this paper, each algorithm will be measured by its worst-case

time complexity.

We will express the running time of each algorithm in this

paper with an asymptotic notation. There exists three different

asymptotic function, namely big-O, big-Omega, and big-Theta.

Let f and g be a non-negative function. We define each

asymptotic function as follows:

a) If there exists positive constants n0 and c such that

𝑓(𝑛) ≤ 𝑐𝑔(𝑛) whenever 𝑛 >= 𝑛0, we say that

𝑓(𝑛) = 𝑂(𝑔(𝑛)) (big-O of 𝑔(𝑛)).

b) If there exists positive constants n0 and c such that

𝑓(𝑛) ≥ 𝑐𝑔(𝑛) whenever 𝑛 ≥ 𝑛0, we say that 𝑓(𝑛) =
𝛺(𝑔(𝑛)) (big-Omega of 𝑔(𝑛)).

c) If 𝑓(𝑛) = 𝑂(𝑛) and 𝑓(𝑛) = 𝛺(𝑛), we say that 𝑓(𝑛) =
𝛩(𝑔(𝑛)) (big-Theta of 𝑔(𝑛)).

The following are the properties of big-O notation:

1) O(f(n)) + O(g(n)) = O(max(f(n), g(n))).

2) O(f(n)) . O(g(n)) = O(f(n) . g(n))

C. Binary Search

The standard usage of binary search is to find an item in a

sorted array. The process involves checking the middle element

to see if it matches the target item. If it does, we stop. If not, we

decide whether we should continue to search the left or right

half of the array based on the comparison. The maximum

amount of operation required until the target item is equal to the

length of sequence [N,N/2,N/4,…, 2,1] which is ⌈𝑙𝑜𝑔2𝑁⌉, so the

time complexity is O(log n). There also exist a slight

modification of binary search to find the lower bound and upper

bound of an element in a sorted array.

Fig. 5. A simple ilustration of binary search.

D. Dynamic Programming

Dynamic programming (DP) is a problem-solving method

that utilizes information from solving smaller subproblems. The

solution to each subproblem is only calculated once and stored

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

in memory. DP is effective when a problem exhibits

overlapping subproblems, allowing us to build solutions while

storing the previous results. By restoring the results of

subproblems, DP reduces redundancy of computation and

lowering time complexity. However, this trade-off involves

increased space usage.

III. PROBLEM ANALYSIS

A. Notation

In this section, we develop some notations and structures to

analyze the problem. We will use the pseudocode notation to

represent the properties of each bus.

Each element busi holds the following properties:

• departureTime: the time (in seconds) when the bus
leaves the previous station. This value will be updated
in each station.

• pace: time in seconds (in seconds) to travel one
kilometer. (denote the pace of the reserve bus as X).

• id: the unique identifier of each bus. This is used to

track and reorder the bus efficiently.

The final answer to each query is the departureTime of the

bus whose id equals the query value N. We will also define the

following variables and notations:

• N : the number of non-reserved bus. (where busN is the

reserve bus).

• M : the number of sorting stations.

• Si : the position in km of the i’th sorting station. (where

SM-1 being the destination).

• 𝑡𝑖,𝑗: the arrival time of bus i to station j.

• ei,j : the expected arrival time of bus i to station j.

𝑒𝑖,𝑗 = 𝑇𝑖,𝑗−1 + 𝑝𝑎𝑐𝑒𝑖 ∗ (𝑆[𝑗] − 𝑆[𝑗 − 1])

Let computeExpArrival(bus, idx) return the expected arrival

time of bus at station idx.

B. Solution I – Naïve Approach

We denote each bus as a tuple [a,b,c], where:

• a represents the departure time (in seconds),

• b is the pace (time per kilometer),

• c is the ID of the bus.

Let’s try to solve the problem for 𝑀 = 2 and 𝑁 = 4, where

initially:

• Non-reserve bus 1: [110, 5, 1]

• Non-reserve bus 2: [70, 15, 2]

• Non-reserve bus 3: [30, 5, 3]

• Non-reserve bus 4: [0, 50, 4]

• Reserve bus : [40, 50, 5]

For each 0 ≤ 𝑖 ≤ 𝑁 and 0 ≤ 𝑗 ≤ 𝑀, we denote the

actual arrival time of bus i at time j as ti,j . Observe that the value

of ti,j is determined by taking the maximum value between:

• ei,j , and

• ek,j such that bus k arrived at station j-1 before the bus

i, for all 0 <= 𝑘 <= 𝑁 where 𝑡𝑘,𝑗−1 < 𝑡𝑖,𝑗−1

We will sort the buses by its departure time in ascending

order. If there are two buses with the same departure time, we

will sort them by their pace in ascending order.

In order to fully compute the arrival time of each bus to the

first sorting station ti,1. We can sort the bus based on the rules

mention before, then we will calculate the values in the sorted

order.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Once the arrival times ti,1 at the first sorting station have

been computed using the sorted order, we can extend this

method to support M > 2 by applying the same logic repeatedly

for each station from 𝑗 = 1 to 𝑗 = 𝑀 − 1.

Since sorting has a time complexity of 𝑂(𝑁 𝑙𝑜𝑔 𝑁), the

final complexity of the code above is 𝑂(𝑀 ⋅ 𝑁 𝑙𝑜𝑔 𝑁).

Repeating this to each 𝑄 queries grant us a final time

complexity of 𝑂(𝑄 ⋅ 𝑀 ⋅ 𝑁 log 𝑁).

C. Solution 2 – Optimization of solution I

Observe that any bus with a pace greater than X (the pace of

the reserve bus) will never affect the final answer to each query.

This is because a bus can only be delayed by other, slower buses

ahead of it—never by faster ones behind it. Therefore, before

processing each query, we can safely discard all buses whose

pace exceeds X. After filtering, we compute and store the

arrival times 𝑡𝑖,j for all remaining buses, where 0 ≤ i < N

and 0 ≤ 𝑗 < 𝑀. Note that for each station j, the array 𝑡x,j must

be sorted. This will help us process each query efficiently. We

will also use this setup for solution 3.

Consider two bus busi and busj (0 ≤ 𝑖, 𝑗 ≤ 𝑁), and

suppose at some station x (0 ≤ x < 𝑀-1), The arrival time of

i is less than or equal to that of bus j. i.e. 𝑡𝑖,𝑥 ≤ 𝑡𝑗,𝑥. It follows

that their arrival order will be preserved at the next station as

well, meaning:

𝑡𝑖,𝑥+1 ≤ 𝑡𝑗,𝑥+1

This implies that the sequence of arrival times from one

station to the next is non-decreasing for each bus relative to

others. Once a bus is ahead of another at a station, it will not be

overtaken in the following stations under this simulation model.

Using this information, we can eliminate the calculation

needed to find curMax at each station. Instead, we perform

binary search to find the nearest bus ahead of the reserve bus

in each station. We then compare its arrival time with the

expected arrival time of the reserve bus to determine whether a

delay should occur.

Since binary search has a time complexity of 𝑂(log N), the

total complexity to answer Q queries is:

𝑂𝑞𝑢𝑒𝑟𝑦 = 𝑂(𝑄) ⋅ 𝑂(𝑀 log 𝑁) = 𝑂(𝑄 ⋅ 𝑀 log 𝑁).

Since we have to sort the array tx,j for each station j before

processing each query (to ensure we can apply binary search),

the time complexity for initialization before processing each

query is calculated as follows:

𝑂𝑖𝑛𝑖𝑡 = 𝑂(𝑀) ⋅ 𝑂(𝑁 log 𝑁) = 𝑂(𝑀 ⋅ 𝑁 log 𝑁)

The total time complexity can be calculated as follows:

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂𝑖𝑛𝑖𝑡 + 𝑂𝑞𝑢𝑒𝑟𝑦

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑀 ⋅ 𝑁 log 𝑁) + 𝑂(𝑄 ⋅ 𝑀 log 𝑁)

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑀 log 𝑁 ⋅ (𝑄 + 𝑁))

D. Solution 3 – DP approach

Let’s define a special point as the intersection between the

station line and the bus line in the illustration. If we start at any

point and end up at a special point, we will have the same result.

Because of this, we can actually pre-calculate the result if we

start at all the special points. Since there 𝑁 stations and 𝑀

buses, we will have at most 𝑁𝑀 special points.

Fig. 6. Point A and B is a special point. For X = 5, if we start at any point within

the green area, we will end up at point B and get a final answer of 140.

If the reserve bus start at a special point x, it may eventually

reach another special point y. This relationship can be

represented using a directed graph, where each node

corresponds to a special point, and a directed edge from node x

to node y indicates that a departure from x leads to an arrival at

y.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 7. Departuring from a special point x leads to an arrival at special point y,

adj(X) = {Y}.

 Suppose we have figured out the relation of each special

point within the illustration. Observe that the graph created

from such relation is a directed acyclic graph.

Fig. 8. Position of each special point (left), DAG form of the illustration

[assuming X = 1] (right).

 Let’s define DP(x) where x is a node from the DAG as the

final answer if we start at point x. The value of DP(x) is defined

as follows:

 We would like to precompute the value of DP for all node,

however we are required to construct the DAG first. A

straightforward simulation would take O(M) per vertex, which

is quite inefficient.

 One key observation is that, after filtering out unnecessary

buses (i.e., those with pace greater than the reserve bus), the

number of buses ahead of the reserve bus is non-increasing at

each station. This monotonicity allows us to perform “long

jumps” and avoid recomputing from scratch at each station a.

After precomputing and storing the arrival times of the other

buses at all stations, we will do the following:

• Use binary search to efficiently determine the last

station p that can be reach without being interrupted

by other bus (i.e, the number of bus ahead of it does

not increase),

• Jump directly to station p, updating the arrival time,

• Then perform another binary search to find the next

state (the next node in the DAG) to transition to.

• Save (memoize) the value of each DP.

This strategy significantly reduces the number of steps per

query from linear in M to logarithmic in M. Since the number

of special points are at most NM, the time complexity to

compute the value of DP(x) for all node x is 𝑂(𝑁𝑀 ⋅ log 𝑀 ⋅
 log 𝑁).

This approach models the reserve bus's journey as a path

through a DAG where each node represents a state (station +

number of buses ahead), and transitions represent "long jumps"

followed by one "normal jump" to the next relevant node.

Hence, the total complexity for precomputation and

initialization is:

𝑂𝑖𝑛𝑖𝑡 = 𝑂(𝑁𝑀 ⋅ log 𝑁 ⋅ log 𝑀)

We will apply this process for each query, replacing the

naïve simulation of one station at a time with an optimized

sequence of binary searches and long jumps to check whether

the reserve bus can reach the last station uninterrupted. Two

cases might happen:

1) The reserve bus arrived at some station p at the same

time with other bus. If this happens, we can return the

precomputed DP value at the corresponding vertex x

where both bus arrived the same time.

2) The reserve bus reaches the last station uninterrupted.

In this case, we simply return the expected arrival time

of the bus to the destination.

This reduces the time complexity to process all queries from

𝑂(𝑄 ⋅ 𝑀 log 𝑁) to 𝑂(𝑄 ⋅ log M log 𝑁).

The total complexity of this solution is computed as follows:

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂𝑖𝑛𝑖𝑡 + 𝑂𝑞𝑢𝑒𝑟𝑦

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑀 ⋅ 𝑁 log 𝑁) + 𝑂(𝑄 ⋅ log M log 𝑁)

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑀𝑁 log 𝑁 + 𝑄 log M log 𝑁)

IV. IMPLEMENTATION

The implementation of each solution will be implemented

in C++. There are two main parts of the code:

• init(…): this part will consist of initialization and

precomputation needed before processing each query.

This procedure will only be called once.

• arrival_time(Y): this part will consist of code requires to

process each query. This function will be called Q times.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The following is a snippet of declarations and utility functions

used in each solution:

Fig. 9. Declarations and utility functions implementations

A. Solution I Implementation

Fig. 10. Implementation of solution I

The previous code highlights the main functionality of

both functions. First, we save the departure time, pace, and ID

of each bus in another array of bus buses_init. Each time a query

is called, we reset the attributes of each regular bus before

proceeding to other calculations.

B. Solution II Implementation

The main difference between solution I and II is the

precomputation. Solution II filters, simulates, and save the

arrival time of all necessary buses. The main implementation

difference between solution I and solution II is highlighted in

yellow.

Fig. 11. Implementation of initialization function for solution II

Additionally, we store additional information from each station:

• arrivalRanges: pairs of (start arrival, adjusted arrival) times

of buses

• arrivalStarts: sorted list of start arrival times

• prefixMaxArrival: prefix maximum of adjusted arrivals

After pre-calculating the required information, we can

process each query by simulating the process efficiently with

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

binary search. The following code utilizes the built-in function

upper_bound() to find the corresponding the queries.

Fig. 12. Implementation of query function for solution II

C. Solution III Implementation

Due to space constraints, the implementation of Solution III

is available at the following link: Implementation-of-Solution-

III-Overtaking.

D. Runtime Comparison

This section will provide the run-time comparison of

solution I, II, III, and the official solution. It is important to note

that the official solution works in:

𝑂𝑡𝑜𝑡𝑎𝑙 = 𝑂(𝑀𝑁 log 𝑁 + 𝑄 log 𝑀𝑁)

While the implementation of the official solution is not

available, the compared solution follows the same core idea as

the official one.

Each algorithm will be tested with fixed parameters 𝑁 = 100

and 𝑀 = 100, while varying the number of queries 𝑄.

num. of
queries(Q)

Runtime (ms)

Sol. I Sol. II Sol. III Official

10 10 0 4 3

100 85 0 5 3

1000 826 34 7 4

10000 8124 128 22 9

100000 83503 1282 174 59

10000000 - 12571 1415 566

100000000 - 126368 13904 5416

Fig. 13. Runtime comparison of each solution. All algorithms were run on an

AMD Ryzen™ 7 4800H Mobile Processor (8-core/16-thread, 12MB

Cache, up to 4.2 GHz boost).

 As Q increases, the runtime of each solution reveal its

scalability. Significantly, solution I becomes infeasible for large

Q, while the official and solution III remain efficient.

We can also plot the performance of each solution in a graph as

following:

Fig. 14. Line graph plotting of each solution’s runtime

V. CONCLUSION

This paper presents an alternative approach to the “Overtaking”

problem from IOI 2023. The solution combines dynamic

programming and binary to search to address the limitation of a pure

simulation method. Three solutions were discussed:

• Solution I, a naïve simulation, straighforward and easy to

implement, but has a poor scalability. This solution becomes

infeasible for large inputs

• Solution II, an optimized version of solution I by utilizing

prefix information and binary search, significantly reduces the

time required to answer each query by eliminating unncessary

and redundant computation with the help of precomputed

structures.

• Solution III, models the problem as a DAG over “special

points”, applying dynamic programming (memoization) and

binary search techniques to further reduce the computation

required to answer each query, achieving a complexity

competitive with the official solution.

Experimental analysis confirmed the thereotical time complexities (in

big-O notation). Especially solution III that scales well even for 𝑄 =
 108. The third solution presented in this paper demonstrates a

compareable performance to the official solution idea.

The solution provided in this paper offers a creative and clear

alternative to the official solution,. The findings demonstrates how

dynamic programming and binary search can be effectively combined

to handle complex problems efficiently.

The implementation of each problem has been tested and judged on

many online judges such as DMOJ and OJ.UZ, in which solution III

able to pass the whole test cases achieving a score of 100.

https://github.com/YeyThePotatoMan/Makalah-Matdis/blob/main/Solution-III.cpp
https://github.com/YeyThePotatoMan/Makalah-Matdis/blob/main/Solution-III.cpp
https://dmoj.ca/problem/ioi23p5
https://oj.uz/problem/view/IOI23_overtaking

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

VI. ACKNOWLEDGEMENT

I would like to express my gratitude to the organizers and

problem authors of the International Olympiad in Informatics

(IOI) 2023 for providing such an interesting problem. I would

like to thank Eljakim Schrijvers and the IOI scientific commitee

for sharing insightful explanation of the official solution.

Additionally, I am thankful to Dr. Rinaldi Munir for his

valuable lecture materials in IF1220 discrete mathematics

course.

VII. REFERENCES

[1] Rinaldi Munir, Kompleksitas Algoritma (Bagian 2), 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf [Accessed: June.
17, 2025]

[2] R. Munir, “Pohon (Bagian 1),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-
Pohon-Bag1-2024.pdf. [Accessed: June. 17, 2025].

[3] TOKI, “Pemrograman Kompetitif Dasar,” OSN TOKI. [Online].
Available: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf.
[Accessed: June. 18, 2025]

[4] E. Schrijvers, IOI 2023 Overtaking - Solution, YouTube, 2023. [Online].
Available: https://www.youtube.com/watch?v=MZ9MMvnzhO4
[Accessed: June. 15, 2025]

[5] J. Sannemo, Principles of Algorithmic Problem Solving, October 24,
2018. [Online]. Available: https://usaco.guide/PAPS.pdf [Accessed: June.
19, 2025]

VIII. APPENDIX

Every implementation mentioned in this paper can be found at

the following link:

https://github.com/YeyThePotatoMan/Makalah-Matdis

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari
makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Kloce Paul William Saragih -
13524040

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-%20Pohon-Bag1-2024.pdf.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-%20Pohon-Bag1-2024.pdf.
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://www.youtube.com/watch?v=MZ9MMvnzhO4
https://usaco.guide/PAPS.pdf
https://github.com/YeyThePotatoMan/Makalah-Matdis

